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INTRODUCTION

Anthropogenic climate change is one of the primary 
threats to the environment and human society (Pecl 
et al., 2017; Lenton et al., 2019). #is planetary-
level modi$cation has had unprecedented e%ects on 
ecosystems and biodiversity (Newson et al., 2009; Walther, 
2010). Numerous species have already demonstrated 
alterations in their distribution and phenology, amongst 
other responses (Walther, 2010; Feeley et al., 2017; Piao et 
al., 2019). For example, mobile species like tropical $sh 
have responded to climate change by migrating to more 
habitable regions, usually poleward or to deeper water, in 
order to $nd their preferred range of oxygen availability 
or water temperature (Munday et al., 2008). Milder 
winters have caused a signi$cant increase in brown 
plumage in populations of tawny owls, allowing them to 
blend in better with the surrounding forest, in Europe 
(Karell et al., 2011). Moreover, fruit &ies in southern, 
high-latitude areas of Australia are demonstrating genetic 

mutations common to more northern populations of the 
country as the species has adapted to drier and hotter 
conditions. Scientists have attributed these changes to 
climate change and have observed similar trends in 
Europe and North America as well (Umina et al., 2005).

Sea turtles are another taxon likely to be a%ected by 
climate change, across all their life stages. #e predicted 
impacts include:

1.	 Sex ratios: As sea turtles have temperature-
dependent sex determination, increase in 
incubation temperatures at nesting beaches may 
result in the feminisation of some populations 
(e.g., Janzen, 1994; Santidrián Tomillo et al., 2015a; 
Jensen et al., 2018) and decreased egg fertilisation 
rates (Glen & Mrosovsky, 2004; Lalöe et al., 2014; 
Jensen et al., 2018; Phillott & Godfrey, 2020).

2.	 Embryo development: Embryo development is faster 
at higher temperatures, reducing the incubation 
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period and allowing less time for embryo growth 
(Reid et al., 2009). #e result is smaller hatchlings, with 
implications for predation rates and performance.

3.	 Hatching success: Even small increases at the upper 
range of incubation temperatures can negatively 
a%ect hatching success (the proportion of eggs 
that hatch to produce hatchlings; Miller, 1999). 
For example, an increase from 30°C to 31°C mean 
incubation temperature can decrease hatching 
success by up to 25% (Howard et al., 2014). 
Changes in average precipitation may also a%ect 
hatching success (Santidrián Tomillo et al., 2012; 
Ra%erty et al., 2017; Montero et al., 2018), with 
heavy rainfall increasing hatching success at drier 
nesting sites and the opposite or variable e%ects 
occurring at high-precipitation sites. (Santidrián 
Tomillo et al., 2015b; Montero et al., 2019). 
Lower hatching success will have implications 
for population recruitment and resilience.

4.	 Hatchling survival and performance: As 
incubation temperatures increase above 32°C, 
hatchlings perform more poorly on tests 
to assess their crawling, self-righting, and 
swimming abilities. Decreased locomotor 
performance at sea will make hatchlings more 
vulnerable to predation (Booth, 2017, 2018).

5.	 Movements and distribution at sea: Being 
ectothermic, sea turtles are a%ected by seawater 
temperature (Milton & Lutz, 2003). For example, 
Kemp’s ridley (Lepidochelys kempii) turtles that 
disperse further north to forage with warmer 
sea surface temperatures (SSTs) during autumn 
months, then retreat too slowly from cold waters 
in winter, are at greater risk of cold-stunning 
(Gri'n et al., 2019). Some populations are already 
adapting to changing ocean temperatures, such as 
Eastern Paci$c olive ridley (Lepidochelys olivacea) 
turtles that forage more northwards during an El 
Niño year to avoid warm waters and seek more 
productive upwelling areas (Plotkin, 2010), and 
hawksbill (Eretmochelys imbricata) turtles in the 
Arabian/Persian Gulf that move out of shallow, 
coastal foraging areas during the summer months 
when aquatic temperatures exceed 33°C (Pilcher et 
al., 2014; Marshall et al., 2020).  

6.	 Reproductive output: The size of adult hawksbill 
turtles in the Arabian/Persian Gulf and Red Sea 
may be restricted by relatively poor foraging 
habitat and/or success due to extreme thermal 
environments. A smaller body size will limit 
clutch size in nesting females (Chatting et 
al., 2018; Mobaraki et al., 2022). There are 

indications that the number of yolkless eggs, 
comprising only an eggshell and egg white 
or albumen, laid by hawksbill turtles in these 
extreme environments are greater than that in 
other populations worldwide; the statistical 
likelihood and biological implications of this 
have yet to be determined (Mobaraki et al., 2022).

7.	 Nesting habitat: Many current nesting beaches 
utilised by sea turtles will likely be reduced in 
area by sea level rise, with beaches in developed 
regions being the most vulnerable (Fish et al., 
2005; Baker et al., 2006; Fuentes et al., 2010). 
Coastal development can prevent the natural 
movement of sediment to replenish beaches, 
causing coastal squeeze, thus, exacerbating 
the impacts of sea level rise (Fish et al., 2008; 
Mazaris et al., 2009a; Biddiscombe et al., 2020).

8.	 Geographic range: In response to climate 
change, sea turtles may shi" their nesting 
(Mancino et al., 2022) and foraging (Patel et al., 
2021) habitat. Range shi" in the form of range 
expansion (as opposed to contraction), that 
exposes sea turtles to greater human activities, 
lesser quality habitat, and other threats, could 
form an ecological trap (Pike, 2013; Ma%ucci et 
al., 2016). Range shi" could also be bene$cial, 
although thoroughly validated examples have 
not yet been reported in the published literature. 

9.	 Emerging diseases and pathogens: Outbreaks 
of infectious diseases in some marine taxa have 
increased in the last few decades, likely driven by 
anthropogenic climate change (Fisher et al., 2012; 
Altizer et al., 2013; Sanderson & Alexander, 2020). In 
sea turtles, warmer waters could increase the rate of 
tumour growth in animals with $bropapillomatosis 
(Herbst, 1994, 1995; Foley et al., 2005) and the 
pathogenicity, transmission pathways, and host 
susceptibility in any disease (see Mashkour et al., 
2020). #e association of climate change with 
emerging diseases in the terrestrial environment, 
such as sea turtle egg fusariosis (Gleason et al., 
2020), has not been conclusively determined. Loss 
of nesting area with climate change-driven sea level 
rise will likely increase nest density (Patricio et al., 
2019) with implications for microbial load in sea 
turtle nests (Honarvar et al., 2016) and the spread 
of pathogens among adjacent clutches (Sarmiento-
Ramirez et al., 2017). Foraging habitats, including 
seagrass meadows (Sullivan et al., 2018) and coral 
reefs (Precht et al., 2016; Tracy et al., 2019), may 
also be impacted by disease and/or pathogens.

10.	Nesting phenology: Alterations in the timing 
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of seasonal activities among animals and plants 
is a commonly observed ecological response to 
environmental perturbations like climate change 
(Walther et al., 2002). Oceans have absorbed ~80% 
of the heat added to the environment (IPCC, 2007), 
impacting parameters like sea surface temperature 
(Hoegh-Guldberg et al., 2007), biogeochemical 
composition (Harley et al., 2006), and sea level 
(Meehl et al., 2005). Ocean temperature a%ects the 
onset of nesting, duration of the nesting season, 
nest abundance, clutch size, mean nesting date, 
and other parameters of the nesting phenology of 
loggerhead (Caretta caretta) sea turtles in Florida 
(Lamont & Fujisaki, 2014). However, patterns are 
not always consistent. For example, higher annual 
SST adjacent to nesting beaches (Weishampel et al., 
2004, 2010; Pike et al., 2006; Hawkes et al., 2007; 
Mazaris et al., 2008, 2013; Lamont & Fujisaki, 2014; 
Patel et al., 2016) and at foraging sites (Mazaris 
et al., 2009b, Monsinjon et al., 2019) have both 
been correlated with earlier nesting. Longer 
(Weishampel et al., 2010; Lamont & Fujisaki, 
2014) and shorter nesting seasons (Pike, 2009; 
Weishampel et al., 2010), and reduced inter-nesting 
intervals (Weber et al., 2011; Valverde-Cantillo et 
al., 2019), have been recorded in warmer years. 
Higher SST at nesting locations has also been 
associated with fewer total clutches, primarily 
as a result of fewer turtles nesting (Mazaris et al., 
2009b; Reina et al., 2009; Patel et al., 2016). Earlier 
nesting is predicted to mitigate exposure of eggs to 
lethal temperatures (Almpanidou et al., 2018) and 
strongly female-biased sex ratios (e.g., Abella Perez 
et al., 2016) that are predicted to occur with higher 
environmental temperatures due to climate change.

We note that the El Niño-Southern Oscillation (ENSO) 
and North Atlantic Oscillation are known or predicted 
to a%ect nesting in some sea turtle populations (e.g., 
Limpus & Nicholls, 1988; Chaloupka et al., 2008; Saba et 
al., 2008; Quiñones et al., 2010; Mortimer, 2012; Arendt 
et al., 2013; Bruno et al., 2020; Santidrián Tomillo et al., 
2020; Hays et al., 2022) but not others (Ariano-Sánchez 
et al., 2020; Santidrián Tomillo et al., 2020; Hays et al., 
2022). However, the impact of climate change on ENSO 
is still uncertain in the face of contradictory $ndings 
(e.g., Yang et al., 2018; Alizadeh, 2022; Geng et al., 
2022); therefore, we do not include this in the above list.

#e impacts of climate change on sea turtles, and its 
mitigation, were identi$ed as a priority research area to 
inform conservation and management of sea turtles by 
Hamann et al. (2010). Subsequent reviews examined 
topics on which research has focused at a global scale, 

and found a growing body of knowledge, predominantly 
in the terrestrial phase of the sea turtle life cycle (Rees et 
al., 2016; Patricio et al., 2021). However, recent regional 
reviews found the impacts and/or mitigation of climate 
change on sea turtles were not well studied in the 
northwestern Indian Ocean and the east coast of Africa 
despite it being regarded by experts as an increasing 
threat (Al Ameri et al., 2022; van de Geer et al., 2022). 

While studies on all the potential impacts of climate 
change on sea turtles deserve attention, understanding 
how nesting phenology may be a%ected is important, 
as changes in timings of migration and the onset and 
duration of nesting have the potential to exacerbate or 
mitigate the impacts of climate change (Pike et al., 2006; 
Mazaris et al., 2008; Pike, 2009; Weishampel et al., 2010; 
Patel et al., 2016). For example, the timing of the nesting 
season has implications for the exposure to climatic 
conditions and hatching success (Santidrián Tomillo 
et al., 2012) and o%shore currents facilitating hatchling 
dispersal and in-water survival (Shillinger et al., 2012; Le 
Gouvello et al., 2020). Hence, we conducted a systematic 
review of methods used worldwide in published studies 
examining alterations in sea turtle nesting phenology 
with climate change, e.g., changes in sea surface 
temperature, to identify the most common methods 
of collecting data and the variables examined. #e 
$ndings of the review can inform and guide researchers 
in the Indian Ocean and Southeast Asia region (and 
beyond) who are interested in monitoring potential 
changes in nesting phenology at their study site/s.

METHODS

Google Scholar was used as the search engine to identify 
empirical studies, based on primary data, on the research 
topic. We performed a literature search using the key 
words/phrases "sea" OR "marine" AND "turtle" AND 
"nesting phenology". #e search was restricted to literature 
published in peer reviewed journals and professional 
newsletters (e.g., Indian Ocean Turtle Newsletter, Marine 
Turtle Newsletter) to date in the 21st century (2000-
2021). Results were screened through 1) review of title 
and abstract; then, 2) review of methods and results for 
relatedness to the research topic. #e reference list of 
relevant literature was also examined to identify further 
studies pertinent to the topic that had not been 
identified through the search on Google Scholar.

A"er close reading of the texts, common themes and 
categories of data of interest were identi$ed (emergent 
coding). Data about the focus species, geographic 
region, study objective, source and collection 
frequency of environmental data, metric/s of sea 
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Sea Turtle % 
Studies

Region % 
Studies

Loggerhead 73.3 Northwest 
Atlantic

53.3

Green 26.7 Mediterranean 33.3

Leatherback 6.7 East Pacific 6.7

Southwest 
Atlantic

6.7

Southwest 
Indian

6.7

Table 1. Sea turtle species and geographic region in studies 
(n=15) assessing the variation in nesting phenology with 
sea surface temperature. Totals exceed 100% as some 

studies examined more than one parameter.

turtle nesting phenology, and $nding/s were extracted 
from each paper and descriptive statistics used to 
summarise the proportion of studies within each code.

RESULTS AND DISCUSSION

From a total of 407 search results, $ltering identi$ed 15 
publications that met our criteria and were included in 
the systematic review: Weishampel et al. (2004, 2010), 
Pike et al. (2006), Hawkes et al. (2007), Mazaris et al. 
(2008, 2009b, 2013), Pike (2009), Hassine et al., (2011), 
Dalleau et al. (2012), Lamont & Fujisaka (2014), Neeman 
et al. (2015), Patel et al. (2016), Monsinjon et al. (2019), 
and Valverde-Cantillo et al. (2019). All examined 
changes in nesting phenology in association with SST.

Loggerhead (73.3%) and green (Chelonia mydas; 26.7%) 
turtles were the subject of all but one of the nesting 
phenology studies examined. No studies considered 
&atback (Natator depressus), hawksbill, Kemp’s ridley, or 
olive ridley turtles (Table 1). Most research was conducted 
in the northwest Atlantic (53.3%) and Mediterranean 
(33.3%) regions; this geographic bias led to the species 
bias, as loggerhead and green turtles predominantly 
nest in these regions. Only one study, in the southwest 
Indian Ocean (Dalleau et al., 2012), examined the 
impacts of climate change on nesting phenology in the 
Indian Ocean basin and no studies from Southeast Asia 
were found. #e geographic and species bias indicates a 
knowledge gap in understanding the potential for climate 
change-driven changes in sea turtle nesting phenology 
in the Indian Ocean region, especially as sea turtles 
in the northwest Indian Ocean experience extreme 
nesting and foraging environments (e.g., Pilcher et al., 
2014; Marshall et al., 2020; Chatting et al., 2021), key 

foraging grounds in Southeast Asia seas are threatened 
by marine heatwaves (Konsta et al., 2022), and other 
regional management units for species in the region are 
at risk from the threat of climate change or insu'cient 
data is publicly available to predict the risk (Wallace et 
al., 2011). #e knowledge gap can also be the result of 
challenges in collecting data, especially over a long time 
period, and the scarcity of baseline data for comparison.

Of the parameters of nesting ecology investigated, the 
most common were the start/onset and the length/
duration of the nesting season (53.3% each), followed by 
the median day of the nesting season (46.7%; Table 2). 
Identifying the date on which the nesting season begins 
and ends, and calculating the median date, may require 
few resources and be potentially more accurate than 
ongoing monitoring of beaches throughout the nesting 
season to estimate peak nesting date, inter-nesting period, 
and start of hatchling emergence. Note that Patricio et al. 
(2021) suggests using the 2.5th percentile of the nesting 
date as a proxy for the commencement of nesting, to 
avoid any outlying data for populations with seasonal 
nesting. (#e 2.5th percentile is the date before which 
2.5% of nesting events occurred.) Researchers should 
also be aware that these metrics can be impractical for 
assessing shi"s in nesting phenology in populations that 
have bimodal or year-round nesting (Dalleau et al., 2012). 

Table 2. Parameter of nesting ecology examined in studies 
(n=15) assessing variation in nesting phenology with sea 
surface temperature. Totals exceed 100% as some studies 

examined more than one parameter.

Parameter Investigated % Studies

Start/onset of nesting season 53.3
Length/duration of nesting season 53.3
Median day of nesting season 46.7
Peak nesting date 13.3
Length of inter-nesting period 6.7

SST data used in the studies we examined was primarily 
derived from central data sources (80.0%) at monthly 
intervals (50.0%) (Table 3). For instance, Pike et al. (2006) 
sourced their SST data from an automated data logger 
attached to buoy 41009 of the National Data Buoy Center. 
Similarly, Weishampel et al. (2004) obtained SST values 
from a National Oceanic and Atmospheric Administration 
(NOAA) buoy (Station 41009). Using environmental data 
from a central source removes the need for researchers 
to purchase and place data loggers at individual study 
sites. Future research could utilise satellite-derived SST 
data (see O’Carroll et al., 2019; Momin et al., 2022).
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Examining SST data from waters adjacent to nesting 
beaches alone was the most common approach (60.0%) 
(Table 3), potentially since nesting beaches are known 
locations and foraging areas for individuals in a nesting 
population may be broadly distributed geographically. 
Only two studies (13.3%) used SSTs at both foraging 
areas and nesting beaches to understand variation in 
nesting phenology with SSTs at di%erent habitats. #eir 
$ndings were di%erent, but complementary. Loggerhead 
turtles in Brazil started their migration in response to 
environmental cues at foraging areas, which determines 
the onset of the nesting season (Mosinjon et al., 2019), 
whilst loggerhead turtles in Greece nested earlier a"er 
an increase in SST at the nesting site (Patel et al., 2016).

#e majority of studies assessed potential changes in 
nesting phenology at only one nesting location (73.3%; 
Table 4). Data sets across all studies ranged from 1-36 years 
in length; studies at single locations examined data from a 
Mean±StDev duration of 16.6±7.3yr (range 4-26yr). #is 
area of research would potentially bene$t from broad 
acceptance of the standards for appropriate baseline data 
and temporal scale of data needed to determine changes 
in nesting phenology with appropriate statistical power.

Finally, we emphasise that comparison of $ndings among 
studies can be challenging (Patricio et al., 2021). #e 
onset of nesting may re&ect atypical events (outliers) 
and the median nesting date can also be ambiguous 

Table 3. Source, interval, and location of sea surface temperature data in studies (n=15) assessing the variation in 
nesting phenology with sea surface temperature.

Source % Studies Interval % Studies Location % Studies

Central data source 80.0 ≤60min 20.0 Nesting beach 60.0
Study data logger 20.0 6-12hr 6.7 Foraging grounds 26.7

Daily 13.3 Both nesting and foraging habitat 13.3

Weekly 6.7

Monthly 53.3

Annually 6.7

Table 4. Number of nesting sites in studies (n=15) 
assessing the variation in nesting phenology with sea 

surface temperature.

# Nesting Sites % Studies

1 73.3
3 13.3
6 6.7
223 6.7

given that it is a%ected both by the onset and duration 
of the nesting season (Mazaris et al., 2013) as well as 
survey e%ort (Patricio et al., 2021). Changes in sea turtle 
nesting phenology parameters in response to SST has also 
been found to vary with latitude (Mazaris et al., 2013).

SUMMARY

Sea turtle populations in the Indian Ocean and southeast 
Asia are threatened by climate change, and some are 
data de$cient on the potential impacts of this threat (see 
Phillott & Rees, 2021). We have summarised the methods 
used in worldwide studies that assessed changes in 
nesting phenology with climate change published from 
2000-2021 to inform researchers interested in similar 
studies at their nesting and/or monitoring sites. Our 
summary does not imply that the same method(s) would 
be the most suitable for all locations, but the information 
we present can be used as a starting point for researchers 
new to the $eld of study. We also remind researchers 
to be cautious and not to assume climate change-
induced changes in sea turtle nesting phenology, since 
reproductive ecology depends on many factors, including 
resource availability and acquisition, environmental cues 
at foraging and breeding sites, courtship, population 
demographics, and geography (Patricio et al., 2021).
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